
Background
Almost a billion people are affected by neglected tropical diseases, leading 
to thousands of deaths per year. Development of medicines to address these 
tropical diseases has been limited since drug research and development is 
expensive, and the target population cannot afford new drugs. 

One of the most prevalent and deadly of these tropical diseases is 
Leishmaniasis affecting 1.6 million people with 300,000 deaths per year; this 
project will focus on finding a treatment for this disease. 

Artificial intelligence has been shown to be a promising for new medicine 
discovery. Artificial intelligence has been successful in categorizing complex 
spaces and generating novel data thus has the potential to be a cost-effective 
approach to generate novel molecules. 

Such an AI guided new molecule drug discovery approach could be 
applied to find treatments for other neglected diseases and help mitigate this 
devastating cycle of market driven drug development.

Utilization of Generative Neural Networks
to Develop Novel Molecules

to Target Leishmaniasis
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Since the molecule generation was successful, and looks effective when 
checking past data, the next step would be to try and partner with laboratories to 
synthesize the molecule/s and test for activity. I'm currently in contact with Dr. 
Benjamin Perry from DNDI, where we are discussing a collaboration.

The generated molecules look promising, after passing the straight faced test 
by having a expert chemist take a look at them. They would be effective with a 
93% on the specific SOM reward and be relatively easy to synthesize — scoring 
a 2.8 — compared to the average 3-5 for bioactive molecules. Taking these into 
account, we can say that we achieved our engineering goal.

Selecting the Target
Targets can be generally lethal to the organism or can be to a specific pathway 
or protein that is essential to the organism. The criteria to choose a target 
include - IC50 data on a diverse set of compounds and the lethality of the target. 
At first, I looked at the general Leishmania donovani organismal target, which 
affected a stage in the parasite's lifecycle. This target had the majority of data 
which is a key to training a  successful neural network. However, I steered away 
from this target due to its nonspecificity.

The target chosen is a specific protein target, Methionyl-tRNA synthetase, 
having 70,331 molecules’ data, all being towards that specific feasible target. 
Since Methionyl-tRNA synthetase is a common target with trypanosomatid 
parasites (parasites having singular flagela), it has a rich prior dataset, with 
many different properties. From there, I collected multiple datasets of the 
target from ChemBL for the neural network.

Engineering Goal
My engineering goal was to create an open-source neural network to 
generate de novo molecules that can become treatments for leishmaniasis. 

One approach to achieving this goal is to utilize existing information relating to a 
specific target that is important in killing leishmania donovani. The reason for 
focusing on a single target is to increase the likelihood of success and allow the 
network to learn from a priori data. Through an iterative process, we looked at 
different neural network model structures to see which models can create 
molecules that fit the constraints. 

By making an open-source neural network developed for leishmaniasis available 
for use in other neglected diseases, the drug discovery cost typically used 
by pharma could be substantially reduced in this setting. This also allows for 
community contribution and widespread use, unlike the current models for 
drug development.

Procedure

Training
The first step was passing the MOSES “general” molecule dataset through the 
neural network. During this time, the loss, which was generated through finding 
the quality of the compression, decreased at an exponential pace over the time 
trained ending at 0.01 (Figure 1). Then I trained it through the general and 
specific ligase datasets (Figure 2). Overall, the loss for this phase was 0.008.

For the reinforcement learning phase, we needed to create reward functions 
to fine tune the generation of molecules, by using the general and specific 
datasets, and finding correlations between the molecules and IC50s. We chose 
self organizing maps (SOMs) for this, because they map high dimensions 
(input molecules), to low dimensional values (such as IC50s) in a 
semi-supervised way, because a majority of the data did not contain IC50 
values. SOMs are also efficient in the way that they determine data through 
competition, and not a form of error correction like regular neural networks.

After training the general ligase SOM, we ended up with an R squared score of 
55%, which showed moderate causation, which was expected for such a 
diverse dataset (Figure 3). The specific SOM had an R squared score of 67%, 
which was significantly higher, and showed significant correlation (Figure 4) - 
yellow is hot and blue is cold.

For the other parts of the reward function, we took into account synthetic 
accessibility, log P, and number of rings. This was to check that the molecule 
would be able to be produced en masse, and be able to be absorbed by cells. If 
the molecule had too many rings, or wasn't synthetically accessible (calculated 
through the synthetic accessibility score in Peter Ertl's paper), this implied that it 
would be impossible to use in the long term. It was also given a reward of -5 if 
the molecule could not be parsed (ie. not a valid sequence). The full reward 
function can be seen in Figure 5

The results for training the model in the second phase were promising. 
The percentage of valid formatted molecules increased exponentially (Figure 6) 
as well as the rewards (Figure 7). During the first few iterations, reward 
functions were not calibrated properly, and molecules were not coming out as 
feasible (mostly carbon strains, which were the most accessible to make, but 
not effective). After tuning it, the reward topped off at around 5.8, reaching the 
peaks of both SOMs. The generated molecules can be seen in Figure 8.

1. Search for molecular targets that can be used to kill the leishmania parasite. 
2. Target selection is based on the effectiveness and quality of data available.
3. Determine what neural network architecture to use, such as a Variational 

Auto-Encoder or Generative Adversarial Neural Networks.
4. Search for past data (libraries of molecules and their effect on target) in 

open source databases to use, specifically related to the target selected.
○ Gather data from broad to more specialized to make sure the neural 

network doesn't get confounded.
5. Decide on reward functions and ways to check for loss.

○ This includes looking into what properties should be optimized: IC50's, 
novelty, druggability etc.

6. Run through the neural network and check the novel generated molecules 
against prior data categorizations.

7. Go back to step 1 if results are unsatisfactory.
8. Choose top de novo molecules to analyze structures, as well as chemical 

synthetic feasibility.
9. Open source the developed neural network and curated datasets.

Architecture
After reviewing multiple models for drug discovery with high probability of 
success, the model chosen was from Alex Zhavoronkov's research article on 
using neural networks to generate an inhibitor of DDR1 kinase.  This research 
group has utilized this model to successfully generate and synthesize 
novel molecules for several targets in cancer and infectious diseases, using 
generous amounts of unlabeled data.  

The model, named GENTRL (Generative Tensorial Reinforcement Learning), 
utilizes a multi pronged approach that simulates the drug discovery 
process. First, it trains a variational auto-encoder (VAE), a common generative 
network that uses compression of the given data (molecules in this case) to 
discover generalized features of the data set, and uses the features to generate 
new and unique data. The second step uses reinforcement learning to fine tune 
the network to certain rewards. These rewards can be generated through a self 
organizing maps that are especially adept at dealing with unlabeled data, along 
with other values to optimize synthesizability.

For the first part with the VAE, it utilizes datasets from very generalized 
biological molecules, and moves on to specific molecules to their target. I 
emulate this by using the same MOSES biological molecule dataset they use, 
my manually collected general ligase (the parent category of synthetase) 
dataset, and another manually collected specific dataset particular to 
Methionyl-tRNA synthetase. The latter two had a mix of molecules with and 
without IC50's, which is where GENTRL's focus on semi-unsupervised 
learning with sparse data came in handy.

Target: Methionyl-tRNA synthetase, putative

Analysis
The model generated molecule (Figure 8 #1) scored well in the SOMs with a 
0.42 score or about 93% of the maximum of the specific SOM, which shows that 
it would be predicted to have a low IC50 against the chosen target. The 
synthetic accessibility score was 2.8, which as seen in the Ertl study, is a 
common range for bioactive molecules. There are 3 aromatic rings in most of the 
molecules, indicating easier synthesis. The logP was higher - 7 - above the 
average 2-4, which would make it harder to disperse.

I showed the model generated molecules to an expert drug discovery chemist, 
Dr. Pasit Phiasivongsa, to check if they pass the straight face test. This is 
commonly used to see if there are any glaring errors in the molecules, which 
could happen due to applying AI without domain expertise. He said the outputs 
look like real synthesizable molecules, and were sufficiently complex enough to 
warrant bioactivity - the druggability and synthesizability look promising.
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Figure 8: Generated Molecules
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Model Diagram 

https://github.com/neelr/LeishNN


2-minute video presentation

http://www.youtube.com/watch?v=Y90u-2Ln6cg

